Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol Res ; 2024: 2264799, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343633

RESUMEN

Macrophage activation is a complex process with multiple control elements that ensures an adequate response to the aggressor pathogens and, on the other hand, avoids an excess of inflammatory activity that could cause tissue damage. In this study, we have identified RND3, a small GTP-binding protein, as a new element in the complex signaling process that leads to macrophage activation. We show that RND3 expression is transiently induced in macrophages activated through Toll receptors and potentiated by IFN-γ. We also demonstrate that RND3 increases NOTCH signaling in macrophages by favoring NOTCH1 expression and its nuclear activity; however, Rnd3 expression seems to be inhibited by NOTCH signaling, setting up a negative regulatory feedback loop. Moreover, increased RND3 protein levels seem to potentiate NFκB and STAT1 transcriptional activity resulting in increased expression of proinflammatory genes, such as Tnf-α, Irf-1, or Cxcl-10. Altogether, our results indicate that RND3 seems to be a new regulatory element which could control the activation of macrophages, able to fine tune the inflammatory response through NOTCH.


Asunto(s)
Macrófagos , Transducción de Señal , Proteínas de Unión al GTP rho , Macrófagos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Ratones , Proteínas de Unión al GTP rho/metabolismo
2.
Int Immunol ; 35(10): 497-509, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37478314

RESUMEN

IL-13 signaling polarizes macrophages to an M2 alternatively activated phenotype, which regulates tissue repair and anti-inflammatory responses. However, an excessive activation of this pathway leads to severe pathologies, such as allergic airway inflammation and asthma. In this work, we identified NOTCH4 receptor as an important modulator of M2 macrophage activation. We show that the expression of NOTCH4 is induced by IL-13, mediated by Janus kinases and AP1 activity, probably mediated by the IL-13Rα1 and IL-13Rα2 signaling pathway. Furthermore, we demonstrate an important role for NOTCH4 signaling in the IL-13 induced gene expression program in macrophages, including various genes that contribute to pathogenesis of the airways in asthma, such as ARG1, YM1, CCL24, IL-10, or CD-163. We also demonstrate that NOTCH4 signaling modulates IL-13-induced gene expression by increasing IRF4 activity, mediated, at least in part, by the expression of the histone H3K27me3 demethylase JMJD3, and by increasing AP1-dependent transcription. In summary, our results provide evidence for an important role of NOTCH4 signaling in alternative activation of macrophages by IL-13 and suggest that NOTCH4 may contribute to the increased severity of lesions in M2 inflammatory responses, such as allergic asthma, which points to NOTCH4 as a potential new target for the treatment of these pathologies.


Asunto(s)
Asma , Interleucina-13 , Humanos , Macrófagos/metabolismo , Inflamación/metabolismo , Transducción de Señal/genética , Receptor Notch4/metabolismo
3.
Methods Mol Biol ; 2472: 67-82, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35674893

RESUMEN

The NOTCH signaling pathway is one of the highly conserved key pathways involved in most cell differentiation and proliferation processes during both developmental and adult stages in most animals. The NOTCH signaling pathway appears to be very simple but the existence of several receptors and ligands, their posttranslational modifications, their activation in the cell surface and its migration to the cell nucleus, as well as their interaction with multiple signaling pathways in the cytoplasm and the nucleus of cells, make the study of its function very complex.To determine the activation of NOTCH signaling in animal cells, several complementary approaches can be performed. One of them is the analysis of the transcription of NOTCH receptor target genes HES/HEY by qRT-PCR and Western blot. This approach would give us an idea of the global NOTCH activation and signaling. We can also analyze the NOTCH transcriptional activity by luciferase assays to determine the global or specific activation of NOTCH receptors under a given treatment or in response to the modification of gene expression. On the other hand, we can determine the specific activation of each NOTCH receptor by Western blot with antibodies that recognize the active forms of each NOTCH receptor. For this assay will be very important to collect the cells to be analyzed under the appropriate conditions. Finally, we can detect the intracellular domain of each NOTCH receptor into the cell nucleus by confocal microscopy using the appropriate antibodies that recognize the intracellular domain of the receptors.


Asunto(s)
Receptores Notch , Transducción de Señal , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Mamíferos/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/fisiología
4.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35163478

RESUMEN

NOTCH signaling is implicated in the development of breast cancer tumors. DLK2, a non-canonical inhibitor of NOTCH signaling, was previously shown to be involved in skin and breast cancer. In this work, we studied whether different levels of DLK2 expression influenced the breast cancer characteristics of MDA-MB-231 cells. We found that DLK2 overexpression inhibited NOTCH activation in a dose-dependent manner. Moreover, depending on the level of inhibition of NOTCH1 activation generated by different levels of DLK2 expression, cell proliferation, cell cycle dynamics, cell apoptosis, cell migration, and tumor growth in vivo were affected in opposite directions. Low levels of DLK2 expression produced a slight inhibition of NOTCH1 activation, and enhanced MDA-MB-231 cell invasion in vitro and cell proliferation both in vitro and in vivo. In contrast, MDA-MB-231 cells expressing elevated levels of DLK2 showed a strong inhibition of NOTCH1 activation, decreased cell proliferation, increased cell apoptosis, and were unable to generate tumors in vivo. In addition, DLK2 expression levels also affected some members of other cell signaling pathways implicated in cancer, such as ERK1/2 MAPK, AKT, and rpS6 kinases. Our data support an important role of DLK2 as a protein that can finely regulate NOTCH signaling and affect the tumor properties and growth dynamics of MDA-MB-231 breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Péptidos y Proteínas de Señalización Intercelular , Receptores Notch , Transducción de Señal , Animales , Femenino , Humanos , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones Desnudos , Modelos Biológicos , Invasividad Neoplásica , Fosforilación , Receptores Notch/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
5.
Front Immunol ; 12: 734966, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925319

RESUMEN

NOTCH4 is a member of the NOTCH family of receptors whose expression is intensively induced in macrophages after their activation by Toll-like receptors (TLR) and/or interferon-γ (IFN-γ). In this work, we show that this receptor acts as a negative regulator of macrophage activation by diminishing the expression of proinflammatory cytokines, such as IL-6 and IL-12, and costimulatory proteins, such as CD80 and CD86. We have observed that NOTCH4 inhibits IFN-γ signaling by interfering with STAT1-dependent transcription. Our results show that NOTCH4 reprograms the macrophage response to IFN-γ by favoring STAT3 versus STAT1 phosphorylation without affecting their expression levels. This lower activation of STAT1 results in diminished transcriptional activity and expression of STAT1-dependent genes, including IRF1, SOCS1 and CXCL10. In macrophages, NOTCH4 inhibits the canonical NOTCH signaling pathway induced by LPS; however, it can reverse the inhibition exerted by IFN-γ on NOTCH signaling, favoring the expression of NOTCH-target genes, such as Hes1. Indeed, HES1 seems to mediate, at least in part, the enhancement of STAT3 activation by NOTCH4. NOTCH4 also affects TLR signaling by interfering with NF-κB transcriptional activity. This effect could be mediated by the diminished activation of STAT1. These results provide new insights into the mechanisms by which NOTCH, TLR and IFN-γ signal pathways are integrated to modulate macrophage-specific effector functions and reveal NOTCH4 acting as a new regulatory element in the control of macrophage activation that could be used as a target for the treatment of pathologies caused by an excess of inflammation.


Asunto(s)
Interferón gamma/metabolismo , Activación de Macrófagos/genética , Macrófagos Peritoneales/inmunología , Receptor Notch4/metabolismo , Transducción de Señal/genética , Receptor Toll-Like 4/metabolismo , Animales , Donantes de Sangre , Humanos , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Células RAW 264.7 , Receptor Notch4/genética , Transducción de Señal/efectos de los fármacos , Transfección
6.
Cells ; 10(6)2021 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-34199169

RESUMEN

The prostaglandins constitute a family of lipids of 20 carbon atoms that derive from polyunsaturated fatty acids such as arachidonic acid. Traditionally, prostaglandins have been linked to inflammation, female reproductive cycle, vasodilation, or bronchodilator/bronchoconstriction. Recent studies have highlighted the involvement of these lipids in cancer. In this review, existing information on the prostaglandins associated with different types of cancer and the advances related to the potential use of them in neoplasm therapies have been analyzed. We can conclude that the effect of prostaglandins depends on multiple factors, such as the target tissue, their plasma concentration, and the prostaglandin subtype, among others. Prostaglandin D2 (PGD2) seems to hinder tumor progression, while prostaglandin E2 (PGE2) and prostaglandin F2 alpha (PGF2α) seem to provide greater tumor progression and aggressiveness. However, more studies are needed to determine the role of prostaglandin I2 (PGI2) and prostaglandin J2 (PGJ2) in cancer due to the conflicting data obtained. On the other hand, the use of different NSAIDs (non-steroidal anti-inflammatory drugs), especially those selective of COX-2 (cyclooxygenase 2), could have a crucial role in the fight against different neoplasms, either as prophylaxis or as an adjuvant treatment. In addition, multiple targets, related to the action of prostaglandins on the intracellular signaling pathways that are involved in cancer, have been discovered. Thus, in depth research about the prostaglandins involved in different cancer and the different targets modulated by them, as well as their role in the tumor microenvironment and the immune response, is necessary to obtain better therapeutic tools to fight cancer.


Asunto(s)
Quimioterapia Adyuvante , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Ciclooxigenasa 2/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Prostaglandinas/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Transducción de Señal/efectos de los fármacos
7.
Cells ; 9(9)2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899774

RESUMEN

The NOTCH family of receptors and ligands is involved in numerous cell differentiation processes, including adipogenesis. We recently showed that overexpression of each of the four NOTCH receptors in 3T3-L1 preadipocytes enhances adipogenesis and modulates the acquisition of the mature adipocyte phenotype. We also revealed that DLK proteins modulate the adipogenesis of 3T3-L1 preadipocytes and mesenchymal C3H10T1/2 cells in an opposite way, despite their function as non-canonical inhibitory ligands of NOTCH receptors. In this work, we used multipotent C3H10T1/2 cells as an adipogenic model. We used standard adipogenic procedures and analyzed different parameters by using quantitative-polymerase chain reaction (qPCR), quantitative reverse transcription-polymerase chain reaction (qRT-PCR), luciferase, Western blot, and metabolic assays. We revealed that C3H10T1/2 multipotent cells show higher levels of NOTCH receptors expression and activity and lower Dlk gene expression levels than 3T3-L1 preadipocytes. We found that the overexpression of NOTCH receptors enhanced C3H10T1/2 adipogenesis levels, and the overexpression of NOTCH receptors and DLK (DELTA-like homolog) proteins modulated the conversion of cells towards a brown-like adipocyte phenotype. These and our prior results with 3T3-L1 preadipocytes strengthen the idea that, depending on the cellular context, a precise and highly regulated level of global NOTCH signaling is necessary to allow adipogenesis and determine the mature adipocyte phenotype.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas/metabolismo , Receptores Notch/metabolismo , Animales , Diferenciación Celular , Células HEK293 , Humanos , Ratones , Transfección
8.
Sci Rep ; 10(1): 14839, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908186

RESUMEN

Macrophage activation by Toll receptors is an essential event in the development of the response against pathogens. NOTCH signaling pathway is involved in the control of macrophage activation and the inflammatory processes. In this work, we have characterized NOTCH signaling in macrophages activated by Toll-like receptor (TLR) triggering and determined that DLL1 and DLL4 are the main ligands responsible for NOTCH signaling. We have identified ADAM10 as the main protease implicated in NOTCH processing and activation. We have also observed that furin, which processes NOTCH receptors, is induced by TLR signaling in a NOTCH-dependent manner. NOTCH3 is the only NOTCH receptor expressed in resting macrophages. Its expression increased rapidly in the first hours after TLR4 activation, followed by a gradual decrease, which was coincident with an elevation of the expression of the other NOTCH receptors. All NOTCH1, 2 and 3 contribute to the increased NOTCH signaling detected in activated macrophages. We also observed a crosstalk between NOTCH3 and NOTCH1 during macrophage activation. Finally, our results highlight the relevance of NOTCH3 in the activation of NF-κB, increasing p65 phosphorylation by p38 MAP kinase. Our data identify, for the first time, NOTCH3 as a relevant player in the control of inflammation.


Asunto(s)
Inflamación/inmunología , Macrófagos/inmunología , Receptor Notch3/fisiología , Animales , Regulación de la Expresión Génica , Humanos , Activación de Macrófagos , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/inmunología , FN-kappa B/inmunología , Células RAW 264.7 , Transducción de Señal , Receptores Toll-Like/inmunología
9.
Sci Rep ; 8(1): 17784, 2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30531983

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

10.
Sci Rep ; 8(1): 16923, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30446682

RESUMEN

The role of NOTCH signaling in adipogenesis is highly controversial, with data indicating null, positive or negative effects on this differentiation process. We hypothesize that these contradictory results could be due to the different global NOTCH signaling levels obtained in different experimental settings, because of a specific modulation of NOTCH receptors' activity by their ligands. We have previously demonstrated that DLK1 and DLK2, two non-canonical NOTCH1 ligands that inhibit NOTCH1 signaling in a dose-dependent manner, modulate the adipogenesis process of 3T3-L1 preadipocytes. In this work, we show that over-expression of any of the four NOTCH receptors enhanced adipogenesis of 3T3-L1 preadipocytes. We also determine that DLK proteins inhibit not only the activity of NOTCH1, but also the activity of NOTCH2, 3 and 4 receptors to different degrees. Interestingly, we have observed, by different approaches, that NOTCH1 over-expression seems to stimulate the differentiation of 3T3-L1 cells towards a brown-like adipocyte phenotype, whereas cells over-expressing NOTCH2, 3 or 4 receptors or DLK proteins would rather differentiate towards a white-like adipocyte phenotype. Finally, our data also demonstrate a complex feed-back mechanism involving Notch and Dlk genes in the regulation of their expression, which suggest that a precise level of global NOTCH expression and NOTCH-dependent transcriptional activity of specific targets could be necessary to determine the final phenotype of 3T3-L1 adipocytes.

11.
FASEB J ; 31(8): 3484-3496, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28461338

RESUMEN

NOTCH receptors participate in cancer cell proliferation and survival. Accumulated evidence indicates that, depending on the cellular context, these receptors can function as oncogenes or as tumor-suppressor genes. The epidermal growth factor-like protein delta-like homolog (DLK)1 acts as a NOTCH inhibitor and is involved in the regulation of normal and tumoral growth. In this work, we focused on the role of DLK1 in the control of breast cancer cell growth, a tumor type in which NOTCH receptors have been shown to play both opposite roles. We found that human DLK1 inhibits NOTCH signaling in MDA-MB-231 breast cancer cells. The proliferation rate and invasion capabilities of these cells depended on the level of NOTCH activation and signaling, as regulated by DLK1. High levels of DLK1 expression led to a significant decrease in NOTCH signaling, which was associated with a decrease in breast cancer cell proliferation and invasion. On the contrary, lower levels of NOTCH inhibition, caused by lower levels of DLK1 overexpression, led to enhanced in vitro MDA-MB-231 cell invasion, and to both in vitro and in vivo increased cell proliferation. The data presented in this work suggest that a fine regulation of NOTCH signaling plays an important role in the control of breast cancer cell proliferation and invasion.-Nueda, M.-L., Naranjo, A.-I., Baladrón V., Laborda, J. Different expression levels of DLK1 inversely modulate the oncogenic potential of human MDA-MB-231 breast cancer cells through inhibition of NOTCH1 signaling.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptor Notch1/metabolismo , Proteínas de Unión al Calcio , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Invasividad Neoplásica , Receptor Notch1/genética
12.
J Immunol ; 197(8): 3371-3381, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27574297

RESUMEN

The involvement of NOTCH signaling in macrophage activation by Toll receptors has been clearly established, but the factors and pathways controlling NOTCH signaling during this process have not been completely delineated yet. We have characterized the role of TSPAN33, a tetraspanin implicated in a disintegrin and metalloproteinase (ADAM) 10 maturation, during macrophage proinflammatory activation. Tspan33 expression increases in response to TLR signaling, including responses triggered by TLR4, TLR3, and TLR2 activation, and it is enhanced by IFN-γ. In this study, we report that induction of Tspan33 expression by TLR and IFN-γ is largely dependent on NOTCH signaling, as its expression is clearly diminished in macrophages lacking Notch1 and Notch2 expression, but it is enhanced after overexpression of a constitutively active intracellular domain of NOTCH1. TSPAN33 is the member of the TspanC8 tetraspanin subgroup more intensely induced during macrophage activation, and its overexpression increases ADAM10, but not ADAM17, maturation. TSPAN33 favors NOTCH processing at the membrane by modulating ADAM10 and/or Presenilin1 activity, thus increasing NOTCH signaling in activated macrophages. Moreover, TSPAN33 modulates TLR-induced proinflammatory gene expression, at least in part, by increasing NF-κB-dependent transcriptional activity. Our results suggest that TSPAN33 represents a new control element in the development of inflammation by macrophages that could constitute a potential therapeutic target.


Asunto(s)
Activación de Macrófagos , Macrófagos/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Tetraspaninas/metabolismo , Receptores Toll-Like/metabolismo , Animales , Humanos , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células RAW 264.7 , Tetraspaninas/genética , Células U937
13.
Cell Signal ; 28(4): 246-54, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26791579

RESUMEN

Canonical NOTCH signaling, known to be essential for tissue development, requires the Delta-Serrate-LAG2 (DSL) domain for NOTCH to interact with its ligand. However, despite lacking DSL, Delta-like 1 homolog (DLK1), a protein that plays a significant role in mammalian development, has been suggested to interact with NOTCH1 and act as an antagonist. This non-canonical interaction is, however controversial, and evidence for a direct interaction, still lacking in mammals. In this study, we elucidated the putative DLK1-NOTCH1 interaction in a mammalian context. Taking a global approach and using Dlk1(+/+) and Dlk1(-/-) mouse tissues at E16.5, we demonstrated that several NOTCH signaling pathways indeed are affected by DLK1 during tissue development, and this was supported by a lower activation of NOTCH1 protein in Dlk1(+/+) embryos. Likewise, but using a distinct Dlk1-manipulated (siRNA) setup in a mammalian cell line, NOTCH signaling was substantially inhibited by DLK1. Using a mammalian two-hybrid system, we firmly established that the effect of DLK1 on NOTCH signaling was due to a direct interaction between DLK1 and NOTCH1. By careful dissection of this mechanism, we found this interaction to occur between EGF domains 5 and 6 of DLK1 and EGF domains 10-15 of NOTCH1. Thus, our data provide the first evidence for a direct interaction between DLK1 and NOTCH1 in mammals, and substantiate that non-canonical NOTCH ligands exist, adding to the complexity of NOTCH signaling.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal/fisiología , Células 3T3-L1 , Animales , Proteínas de Unión al Calcio , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Noqueados , Estructura Terciaria de Proteína , Receptor Notch1/genética
14.
Biol Cell ; 108(2): 29-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26621221

RESUMEN

The NOTCH signalling pathway is one of the key molecular pathways of embryonic development and adult tissues homeostasis in mammals. Mammals have four NOTCH receptors and various ligands that modulate their activity. Many cell disorders, whose genesis involves the NOTCH signalling pathway, have been discovered, including cancer. The mechanisms by which these receptors and their ligands affect liver cell transformation are not yet well understood, and they seem to behave as both oncogenes and tumour-suppressor proteins. In this review, we discuss the published data regarding the role of these proteins in the development of hepatoblastoma, cholangiocarcinoma and hepatocellular carcinoma malignancies. The alteration of the NOTCH signalling pathway may be one of the main drivers of hepatic neoplastic growth. However, this signalling pathway might also modulate the development of specific liver tumour features. The complexity of the function of NOTCH receptors and their ligands may be due to their interactions with many other cell signalling pathways. Furthermore, the different levels of expression and activation of these receptors could be a reason for their distinct and sometimes contradictory effects.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Colangiocarcinoma/metabolismo , Hepatoblastoma/metabolismo , Ligandos , Neoplasias Hepáticas/metabolismo , Receptores Notch/metabolismo , Animales , Humanos
15.
Biochim Biophys Acta ; 1843(11): 2674-84, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25093684

RESUMEN

NOTCH receptors regulate cell proliferation and survival in several types of cancer cells. Depending on the cellular context, NOTCH1 can function as an oncogene or as a tumor suppressor gene. DLK1 is also involved in the regulation of cell growth and cancer, but nothing is known about the role of DLK2 in these processes. Recently, the proteins DLK1 and DLK2 have been reported to interact with NOTCH1 and to inhibit NOTCH1 activation and signaling in different cell lines. In this work, we focused on the role of DLK proteins in the control of melanoma cell growth, where NOTCH1 is known to exert an oncogenic effect. We found that human DLK proteins inhibit NOTCH signaling in SK-MEL-2 metastatic melanoma cells. Moreover, the proliferation rate of these cells was dependent upon the level of NOTCH activation and signaling as regulated by DLK proteins. In particular, high levels of NOTCH inhibition resulted in a decrease, whereas lower levels of NOTCH inhibition led to an increase in melanoma cell proliferation rates, both in vitro and in vivo. Finally, our data revealed additive NOTCH-mediated effects of DLK proteins and the γ-secretase inhibitor DAPT on cell proliferation. The data presented in this work suggest that a fine regulation of NOTCH signaling plays an important role in the control of metastatic melanoma cell proliferation. Our results open the way to new research on the role of DLK proteins as potential therapeutic tools for the treatment of human melanoma.

16.
Biol Cell ; 106(8): 237-53, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24828459

RESUMEN

BACKGROUND INFORMATION: Delta-like proteins 1 and 2 (DLK1, 2) are NOTCH receptor ligands containing epidermal growth factor-like repeats, which regulate NOTCH signalling. We investigated the role of DLK and the NOTCH pathway in the morphogenesis of the submandibular salivary glands (SMGs), using in vitro organotypic cultures. RESULTS: DLK1 and 2 were present in all stages of SMG morphogenesis, where DLK1 inhibited both NOTCH activity and SMG branching. The addition of NOTCH inhibitory agents, either soluble DLK1 (sDLK1) or N-[N-(3, 5-difluorophenacetyl-L-alanyl]-S-phenylglycine t-buthyl ester (DAPT), to the SMG culture medium did not affect the rate of cell proliferation, but induced a strong reduction in SMG branching, increased epithelial apoptosis, and impaired innervation of the epithelial end buds by local parasympathetic ganglion neurons. SMG innervation could be restored by the acetylcholine analog carbachol (CCh), which also rescued cytokeratin 5 (CK5(+))-expressing epithelial progenitor cells. Despite this, CCh failed to restore normal branching morphogenesis in the presence of either sDLK1 or DAPT. However, it improved recovery of branching morphogenesis in SMGs, once DLK1 or DAPT were removed from the medium. CONCLUSIONS: Our data suggest that DLK1 regulates SMGs morphogenesis and parasympathetic nerve fibre outgrowth through inhibition of NOTCH signalling.


Asunto(s)
Ganglios Parasimpáticos/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Receptores Notch/fisiología , Glándula Submandibular , Animales , Proteínas de Unión al Calcio , Dipéptidos/farmacología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Ratones , Morfogénesis/fisiología , Técnicas de Cultivo de Órganos , Receptores Notch/antagonistas & inhibidores , Transducción de Señal , Células Madre/fisiología , Glándula Submandibular/embriología , Glándula Submandibular/inervación
17.
Development ; 140(18): 3743-53, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23946446

RESUMEN

Muscle development and regeneration is tightly orchestrated by a specific set of myogenic transcription factors. However, factors that regulate these essential myogenic inducers remain poorly described. Here, we show that delta-like 1 homolog (Dlk1), an imprinted gene best known for its ability to inhibit adipogenesis, is a crucial regulator of the myogenic program in skeletal muscle. Dlk1(-/-) mice were developmentally retarded in their muscle mass and function owing to inhibition of the myogenic program during embryogenesis. Surprisingly however, Dlk1 depletion improves in vitro and in vivo adult skeletal muscle regeneration by substantial enhancement of the myogenic program and muscle function, possibly by means of an increased number of available myogenic precursor cells. By contrast, Dlk1 fails to alter the adipogenic commitment of muscle-derived progenitors in vitro, as well as intramuscular fat deposition during in vivo regeneration. Collectively, our results suggest a novel and surprising dual biological function of DLK1 as an enhancer of muscle development, but as an inhibitor of adult muscle regeneration.


Asunto(s)
Envejecimiento/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Regeneración/fisiología , Adipogénesis , Adiponectina/metabolismo , Animales , Proteínas de Unión al Calcio , Tamaño de la Célula , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Tamaño de los Órganos , Fenotipo
18.
Mol Endocrinol ; 26(1): 110-27, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22074948

RESUMEN

Mouse resistin, a cysteine-rich protein primarily secreted from mature adipocytes, is involved in insulin resistance and type 2 diabetes. Human resistin, however, is mainly secreted by immune mononuclear cells, and it competes with lipopolysaccharide for the binding to Toll-like receptor 4, which could mediate some of the well-known proinflammatory effects of resistin in humans. In addition, resistin has been involved in the regulation of many cell differentiation and proliferation processes, suggesting that different receptors could be involved in mediating its numerous effects. Thus, a recent work identifies an isoform of Decorin (Δ Decorin) as a functional resistin receptor in adipocyte progenitors that may regulate white adipose tissue expansion. Our work shows that the mouse receptor tyrosine kinase-like orphan receptor (ROR)1 could mediate some of the described functions of resistin in 3T3-L1 adipogenesis and glucose uptake. We have demonstrated an interaction of mouse resistin with specific domains of the extracellular region of the ROR1 receptor. This interaction results in the inhibition of ROR1 phosphorylation, modulates ERK1/2 phosphorylation, and regulates suppressor of cytokine signaling 3, glucose transporter 4, and glucose transporter 1 expression. Moreover, mouse resistin modulates glucose uptake and promotes adipogenesis of 3T3-L1 cells through ROR1. In summary, our results identify mouse resistin as a potential inhibitory ligand for the receptor ROR1 and demonstrate, for the first time, that ROR1 plays an important role in adipogenesis and glucose homeostasis in 3T3-L1 cells. These data open a new line of research that could explain important questions about the resistin mechanism of action in adipogenesis and in the development of insulin resistance.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis , Glucosa/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Resistina/metabolismo , Células 3T3-L1 , Animales , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Células HEK293 , Humanos , Resistencia a la Insulina/fisiología , Ratones , Células 3T3 NIH , Fosforilación , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
19.
Biochim Biophys Acta ; 1813(6): 1153-64, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21419176

RESUMEN

The protein DLK2, highly homologous to DLK1, belongs to the EGF-like family of membrane proteins, which includes NOTCH receptors and their DSL-ligands. The molecular mechanisms by which DLK proteins regulate cell differentiation and proliferation processes are not fully established yet. In previous reports, we demonstrated that DLK1 interacts with itself and with specific EGF-like repeats of the NOTCH1 extracellular region involved in the binding to NOTCH1 canonical ligands. Moreover, the interaction of DLK1 with NOTCH1 caused an inhibition of basal NOTCH signaling in preadipocytes and mesenchymal multipotent cells. In this work, we demonstrate, for the first time, that DLK2 interacts with itself, with DLK1, and with the same NOTCH1 receptor region as DLK1 does. We demonstrate also that the interaction of DLK2 with NOTCH1 similarly results in an inhibition of NOTCH signaling in preadipocytes and Mouse Embryo fibloblasts. In addition, we demonstrate that a membrane DLK1 variant, lacking the sequence recognized by the protease TACE, also inhibits NOTCH signaling. Furthermore, both DLK1 and DLK2 are able to decrease NOTCH activity also when triggered by specific NOTCH ligands. However, the decrease in NOTCH signaling induced by overexpression of Dlk2 is reversed by the overexpression of Dlk1, and viceversa. We conclude that DLK1 and DLK2 act as inhibitory non-canonical protein ligands for the NOTCH1 receptor that modulate NOTCH signaling.


Asunto(s)
Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal , Células 3T3 , Células 3T3-L1 , Proteínas Adaptadoras Transductoras de Señales , Adipocitos/citología , Adipocitos/metabolismo , Animales , Unión Competitiva , Western Blotting , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Células HEK293 , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Unión Proteica , Receptor Notch1/genética , Proteínas Serrate-Jagged , Técnicas del Sistema de Dos Híbridos
20.
Eur J Immunol ; 39(9): 2556-70, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19662631

RESUMEN

Macrophages present different Notch receptors and ligands on their surface. Following macrophage activation by LPS or other TLR ligands, Notch1 expression is upregulated. We report here that Notch signaling increases both basal and LPS-induced NF-kappaB activation, favoring the expression of genes implicated in the inflammatory response, such as the cytokines TNF-alpha and IL-6, or enzymes, such as iNOS. Delta4 seems to be the most effective ligand to induce Notch activation and increasing NF-kappaB transcriptional activity in macrophages. We show that Notch1 signaling promotes NF-kappaB translocation to the nucleus and DNA binding by increasing both phosphorylation of the IkappaB kinase alpha/beta complex and the expression of some NF-kappaB family members. Treatment of macrophages with the gamma-secretase inhibitor DAPT, which prevents the cleavage and activation of Notch receptors, inhibits all these processes, diminishing NF-kappaB activity following LPS stimulation. Additionally, we show that the active intracellular Notch fragment can directly interact with TNF-alpha and iNOS promoters. Our results suggest that Notch signaling results in an amplification of the macrophage-dependent inflammatory response by enhancing NF-kappaB signaling.


Asunto(s)
Activación de Macrófagos/inmunología , Macrófagos Peritoneales/inmunología , FN-kappa B/inmunología , Receptor Notch1/inmunología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/inmunología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Línea Celular , Inhibidores Enzimáticos/farmacología , Humanos , Quinasa I-kappa B/inmunología , Quinasa I-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Masculino , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Ratones , FN-kappa B/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...